SQL SERVER PERFORMANCE

PART II

LARRY ANSLEY

April 12, 2004

Demonstration of Performance Monitoring Tools

uspPerformanceStats – A stored procedure that captures performance metrics over a specified period of time.

uspProcessWaitAndInputBufferRecorder – A stored procedure that captures resource waiting and process blocking information from the sysprocesses table at specified intervals for a specified period of time. Related SQL commands are simultaneously captured from the DBCC InputBuffer command. Results of both are stored in user tables (sysprocessesLog and InputBufferLog) in the Master database.
uspReportProcessWaitingAndBlocking – A stored procedure for reporting the results of uspProcessWaitAndInputBufferRecorder.

SQL Server 2000 Wait Type – A web document found at both www.sqldev.net (http://sqldev.net/misc/waittypes.htm) and www.sqlteam.com (http://www.sqlteam.com/Item.asp?ItemID=15538) that lists and describes wait types encountered in the sysprocesses table. I believe the author of this document is Bill Graziano, a principal of SQLTeam.com.

Tables

For clustered indexes, favor single numeric columns with small datatypes over character columns and composite indexes.

Integer joins are less costly than character joins. I favor integer columns with the Identity property.

Do not cluster on updateable columns.
Make clustered indexes and primary keys on different columns where appropriate.

Clustering on a foreign key is sometimes a good choice to avoid Bookmark operations in joins.

Keep tables narrow, by avoiding variable datatypes (VarChar, VarBinary) where appropriate (narrow columns or fixed width values).

These add 10 bytes per row, plus 2 bytes per variable column.

Keep tables narrow, by not using text-in-row.

EXEC sp_tableoption 'orders', 'text in row', '1000'
EXEC sp_tableoption 'orders', 'text in row', ‘Off’
Keep tables narrow, by partitioning long columns into separate tables with one-to-one relationships.
Example, the message portion of email tables.

Archive older less frequently accessed records.
Even an identically structured table in the same database “Unioned” on the current table can improve performance, especially for insert operations.

Indexes
Don’t add duplicate or unnecessary indexes.

Keep statistics current.
To view settings for specific tables

EXEC sp_autostats CustInfo

To change settings for specific tables/indexes

EXEC sp_autostats CustInfo, 'On', PK_CustInfo

To refresh statistics

UPDATE STATISTICS CustInfo

To view statistics for specific table/index/statistics

DBCC SHOW_STATISTICS (CustInfo, PK_CustInfo)
To view database options

EXEC sp_dboption 'GasDB'

To set database options

EXEC sp_dboption 'GasDB', 'Auto Update Statistics', 'On'

EXEC sp_dboption 'GasDB', 'Auto Create Statistics', 'On'

Keep index widths as narrow as possible.
Don’t use NChar, NVarChar, or NText unless international compatibility is required.

Use smallest practical datatype, e.g. TinyInt, SmallInt, Integer, vs. BigInt. And SmallDateTime vs. DateTime.

The column order for composite indexes must match the column order in Where and Order By clauses to be used.
Part of a composite index can be used as long as it involves the first columns in proper sequence.

When creating and using composite indexes, use the most selective columns first.

Make use of “Index Intersection” by using multiple single column indexes, instead of wider composite indexes.

Columns that are not at least 95% unique do not make useful non-clustered indexes, and will probably not be used by the query optimizer.

If possible, set the “Unique” property for indexes, especially for clustered indexes to avoid automatic Uniqueifiers.
Consider using “Covering Indexes”, where appropriate.

Uniqueness of some columns is not important, as long as the first column or columns are unique.
Optimize indexes regularly.

Use DBCC DBREINDEX for optimal performance where going offline is OK.
Use DBCC INDEXDEFRAG where databases must remain online or process may need to be interrupted.

Use DBCC SHOWCONTIG to examine fragmentation.

Manage index “FillFactors”.
Measure growth between index reorganizations and set FillFactors accordingly.

Stored Procedures & Transact-SQL

Query Analysis Tools

Return information with results

Graphical Show Execution Plan

Graphical Show Server Trace

Graphical Show Client Statistics

Set Statistics IO On

Set Statistics Time On

Set Statistics Profile On

Return information in lieu of results

Graphical Display Estimated Execution Plan

Set ShowPlan Replaced in SQL 2000 with

Set ShowPlan_All

Set ShowPlan_Text

Set NoCount On to avoid unnecessary network trips.

Especially in Triggers.
Avoid using SQL Server Cursors.
Cursors require significant overhead, and are difficult to analyze in SQL Profiler. A “While Loop” is often a viable alternative.

Don’t use the Distinct keyword unnecessarily.

Don’t return unnecessary columns or rows.
Avoid Where clauses that are non-sargable.

Sargable clauses include =, >=, >, <=, <, Like ‘string%’

Non-sargable clauses include <>, “Is Null”, “Or”, “Not In”, “Not Exists”, “Not Like”, Like ‘%string%’, and any computation or formatting of the compared column. A left outer join with a null returned value is often an alternative to clauses containing “Not”.
Locate all DDL statements at the beginning of stored procedures from which it is called.

Each DDL statement encountered lower in the procedure will force a recompile. Calling temporary table created outside the procedure will also cause a recompile.
For temporary use, favor temp tables over regular tables.

Regular tables used temporarily require recompilation each time the plan is executed. The first time is for “deferred object resolution”, the second time is for “schema change”. Temp tables force recompilation only the first execution. The schema change requirement doesn’t exist for temp tables.
Avoid explicitly setting ANSI options inside of stored procedures.

ARITHABORT
QUOTED_IDENTIFIER

ANSI_NULLS

ANSI_PADDING

ANSI_WARNINGS

CONCAT_NULL_YIELDS_NULL

The state of these settings at the time of procedure creation is stored with the execution plan. Changing these settings inside the procedure causes SQL Server to assume the state is different, and therefore forces recompilation.

Constraints are more efficient than triggers.

Use Between instead of In clauses to reduce read counts.
Favor Exists over Count(*) to verify data existence.

Use derived tables or table variables (in SQL 2000) instead of temporary tables.

Use stored procedures from client applications instead of imbedded Transact-SQL.

This provide performance benefits (plan reuse, reduced network traffic, etc.) and security benefits.

Join tables on the same datatypes.

Use sp_ExecuteSQL instead of Execute if imbedded Transact-SQL is required.

This enables parameter substitution in the execution plan, which makes plans more reusable. See master.dbo.syscacheobjects for examples of plans.
Keep transactions as short as possible to limit locking duration.

Refer to database objects by their owner and object names (e.g. dbo.uspSomeProcedure).
This expedites resolving to the correct database object, especially if the owner is not dbo.

Call stored procedures in the correct case.

Do not use the prefix “sp_” for stored procedures.

This automatically attempts to resolve to objects in the Master database.

Use Union All or a table Join instead of Union where possible.

In Where clauses, use the most selective criteria first.

Avoid using Optimizer hints, which defeat the SQL Server Optimizer.
Except …

Locking hints – NOLOCK or maybe READUNCOMMITTED

Or maybe use them all you want.

Good Sources Of SQL Server Performance Information

Books

SQL Server Query

Performance Tuning Distilled

Sajal Dam

Curlingstone
SQL Tuning

Dan Tow

O’Reilly
Web Sites

www.SQL-Server-Performance.com
www.SQLServerCentral.com
www.SQLTeam.com
www.SQLDev.net
PAGE
2

