
©Tech Conferences and the Author. All rights reserved worldwide. Reprinted by permission.

SAA310

Improving SQL Server 
Database Performance With 

Partitioning Solutions
Sharon F. Dooley

Dooley Associates, Inc.

SQL Server Magazine LIVE!

About Sharon

• Worked with SQL Server since its first 
release

• Run a small consulting business 
specializing in db design and performance 
tuning

• Instructor and course developer for 
Learning Tree International

SQL Server Magazine LIVE!

I’ve Tried Everything So Far, 
and It Still Isn’t Enough

• What do you do when you’ve 
– added all the indexes you can
– tuned your queries to the nth degree
– Thrown all the hardware you can at the problem

and the performance still doesn’t meet 
requirements?

• It’s time to consider some less desirable tuning 
options
– All modify the relational database structure so that it 

no longer conforms to your logical model



©Tech Conferences and the Author. All rights reserved worldwide. Reprinted by permission.

SQL Server Magazine LIVE!

Tuning Solutions

• Controlled data redundancy
• Partitioning

– Horizontal
– Vertical
– Partitioned Views
– Distributed Partitioned Views

SQL Server Magazine LIVE!

Partitioning

• Partitioning strategies are often very useful in 
improving performance

• Often not transparent to user or applications
• Strategies include

– Placing data on different file groups
– Splitting tables

• Vertically
• Horizontally

– Using partitioned views
– Separating data based on processing requirements

SQL Server Magazine LIVE!

Segmenting Tables Vertically

• Place some of the columns in one table, and the 
rest in another
– Violation of logical design rule against one-to-one 

relationships
• Consider splitting the table vertically when 

different users consistently access different 
subsets of its columns

• Pros
– Improved scan efficiency 
– Increased data availability 



©Tech Conferences and the Author. All rights reserved worldwide. Reprinted by permission.

SQL Server Magazine LIVE!

Segmenting Tables Vertically
(continued)

• Cons
– Join required when both segments are required
– Users or programmers need to know that the table 

has been split
– Requires more space

• Primary key stored multiple times

• Techniques
– Include the primary key of the original table in every 

partition
– Include each non-key column in exactly one table
– Include all rows in every partition, even if everything 

but the key is null

SQL Server Magazine LIVE!

Segmenting Tables Horizontally
• Place some of the rows in one table, and the 

rest in another
• Consider splitting into multiple tables when

– Different groups of users access different subsets of 
rows

– Historical data is infrequently referenced compared to 
current data

• Pros
– Improved scan efficiency
– Increased data availability
– Potential geographic distribution
– Potential placement on different disk structures

SQL Server Magazine LIVE!

Segmenting Tables Horizontally
(continued)

• Cons
– May require UNION to recombine when full set of data 

is needed
• Use UNION ALL so duplicate elimination isn’t required

– May be more difficult to manage referential integrity
– Visible to users and applications

• Technique
– Store each row in exactly one of the new tables
– Include all of the columns in each segment



©Tech Conferences and the Author. All rights reserved worldwide. Reprinted by permission.

SQL Server Magazine LIVE!

Partitioned Views

• First introduced in SQL Server 7, 
partitioned views allow you to segment a 
table horizontally and have the optimizer 
determine the correct partition to query

• Partitioned views can be read-only or
updatable

SQL Server Magazine LIVE!

Partitioned View Example

Pre1970Orders

Orders1970to1990

Post1990Orders

Orders

Tables

View

SQL Server Magazine LIVE!

Partitioned Views
(continued)

• Queries of the form
WHERE OrderDate < 1970

will search only the Pre1970Orders table
• The partitioned tables can be placed on 

separate file groups



©Tech Conferences and the Author. All rights reserved worldwide. Reprinted by permission.

SQL Server Magazine LIVE!

Defining the Partitioned Base 
Tables

• Choose a partitioning column
– Cannot allow nulls
– Cannot be a computed column

• Must be able to apply a check constraint to the 
partitioning column
– No overlaps in values between tables
– Only operators allowed are BETWEEN, AND, OR, =, >, 
>=, <, and <=

• Base tables cannot have any indexes on 
computed columns

SQL Server Magazine LIVE!

Defining the Partitioned View

• Series of SELECT statements against each 
of the base tables

• Combine the SELECTs with UNION ALL
• Partitioning column must be in the same 

position in all SELECT lists
• Each base table can appear only once in 

the view

SQL Server Magazine LIVE!

Maintaining Data Through 
Partitioned Views

• When inserting new rows, must supply a value 
for all nonnullable columns in the view
– Defaults will be ignored

• Partitioning column must conform to the one of 
the check constraints in the underlying table

• Must have a primary key 
• Primary key must include the partitioning column
• Cannot have an identity column



©Tech Conferences and the Author. All rights reserved worldwide. Reprinted by permission.

SQL Server Magazine LIVE!

Other Partitioning Strategies

• Separate OLTP activities from Decision 
Support activities

• Defer resource-intensive processing until
nonpeak hours if possible

SQL Server Magazine LIVE!

• Demo 1

SQL Server Magazine LIVE!

Federated Databases
• SQL Server 2000 (Enterprise and 

Developer editions only) introduces the 
ability to build a federated database
– Also referred to as Distributed Partitioned 

Views (DPV)
– Technology that Microsoft has used for its 

high TPC-C benchmark scores
• In a federated database, some or all of the 

database tables are distributed across 
multiple servers



©Tech Conferences and the Author. All rights reserved worldwide. Reprinted by permission.

SQL Server Magazine LIVE!

Federated Databases
(continued)

• After a database and its applications have been 
fully optimized, there are two additional ways of 
increasing performance
– Scale up is available in 7 and 2K
– Scale out is only SQL2K

• Scale up by adding
– More memory
– More CPUs
– Faster CPUs
– More or faster disks

SQL Server Magazine LIVE!

Federated Databases
(continued)

• Scale out by adding more server nodes

Pre1970Orders

Orders1970to19
90

Post1990Orders

Orders

Tables

View

SQL Server Magazine LIVE!

Should I Scale Up or Scale 
Out?

• Scale up first
• When you have scaled up completely to 

the maximum feasible capacity of one 
server, and are still not meeting your 
performance goals, think about scaling out

• Make sure that your queries are properly 
tuned before scaling out



©Tech Conferences and the Author. All rights reserved worldwide. Reprinted by permission.

SQL Server Magazine LIVE!

Should I Scale Up or Scale Out?
(continued)

• Scale out does not improve response times for a 
single query
– In fact, often slower because of the need to retrieve 

remote data
– Instead, can ultimately perform more transactions per 

unit of time because there is more total hardware 
capacity

• Example:
– 8-processor box can perform 100 transactions per 

second
– With distributed partitioned views, transaction rate 

drops to 50 per second
– But with four 8-way servers, end result is 200 

transactions per second

SQL Server Magazine LIVE!

Designing a Federated 
Database

• Best if you can store a partitioned table and its 
related tables together
– If we partition Orders, we would also want to partition 

Order Details
– Same principle also applies to local partitioned views

• Lookup tables can be copied if static or 
managed with replication or INSTEAD OF
triggers

• Will need a lot of monitoring over time to make 
sure the initial partition design remains 
appropriate

SQL Server Magazine LIVE!

Using a Routing Table
• Federated databases may have a combination 

of distributed partitioned views and data-
dependent routing 
– Data-dependent routing is used by an application to 

determine where desired data can be found
• Allows applications to query locations directly
• Maintain the location table in SQL Server
• At application startup, cache the location table in 

the front end
• Use this to determine where data is located, or 

where data should be modified



©Tech Conferences and the Author. All rights reserved worldwide. Reprinted by permission.

SQL Server Magazine LIVE!

Implementing a Federated 
Database

• All servers must be SQL Server 2000
• Table structures must be identical, except for the 
CHECK constraint that defines the partition

• Partition tables must not have triggers or 
cascading referential integrity constraints
– Must conform to the rules for local partitioned views

• Create the partition tables on the member 
servers
– Table names and database names should be the 

same on all member servers
• Add linked server definitions

SQL Server Magazine LIVE!

Implementing a Federated 
Database (continued)

• Set the lazy schema validation
option

sp_serveroption 'servername', 
'lazy schema validation',
TRUE

– This option makes sure that the query 
processor doesn’t request metadata for any of 
the linked tables until it is actually needed

SQL Server Magazine LIVE!

Implementing a Federated 
Database (continued)

• Create the distributed partitioned view on each 
server
CREATE VIEW Orders

AS

SELECT * 
FROM server1.BigWind.dbo.Pre1970Orders

UNION ALL
SELECT *

FROM server2.Bigwind.dbo.Orders19701990

UNION ALL
SELECT *

FROM server3.Bigwind.Dbo.Post1990Orders



©Tech Conferences and the Author. All rights reserved worldwide. Reprinted by permission.

SQL Server Magazine LIVE!

• Demo 2

SQL Server Magazine LIVE!

Questions?

SQL Server Magazine LIVE!

Thank you!

• Please drop off your 
session evaluations in 
the basket at the back 
of the room!

• Your comments are 
greatly appreciated!


