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About Sharon

• Worked with SQL Server since its first 
release

• Run a small consulting business 
specializing in db design and performance 
tuning

• Instructor and course developer for 
Learning Tree International
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I’ve Tried Everything So Far, 
and It Still Isn’t Enough

• What do you do when you’ve 
– added all the indexes you can
– tuned your queries to the nth degree
– Thrown all the hardware you can at the problem

and the performance still doesn’t meet 
requirements?

• It’s time to consider some less desirable tuning 
options
– All modify the relational database structure so that it 

no longer conforms to your logical model
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Tuning Solutions

• Controlled data redundancy
• Partitioning

– Horizontal
– Vertical
– Partitioned Views
– Distributed Partitioned Views
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Partitioning

• Partitioning strategies are often very useful in 
improving performance

• Often not transparent to user or applications
• Strategies include

– Placing data on different file groups
– Splitting tables

• Vertically
• Horizontally

– Using partitioned views
– Separating data based on processing requirements
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Segmenting Tables Vertically

• Place some of the columns in one table, and the 
rest in another
– Violation of logical design rule against one-to-one 

relationships
• Consider splitting the table vertically when 

different users consistently access different 
subsets of its columns

• Pros
– Improved scan efficiency 
– Increased data availability 
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Segmenting Tables Vertically
(continued)

• Cons
– Join required when both segments are required
– Users or programmers need to know that the table 

has been split
– Requires more space

• Primary key stored multiple times

• Techniques
– Include the primary key of the original table in every 

partition
– Include each non-key column in exactly one table
– Include all rows in every partition, even if everything 

but the key is null
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Segmenting Tables Horizontally
• Place some of the rows in one table, and the 

rest in another
• Consider splitting into multiple tables when

– Different groups of users access different subsets of 
rows

– Historical data is infrequently referenced compared to 
current data

• Pros
– Improved scan efficiency
– Increased data availability
– Potential geographic distribution
– Potential placement on different disk structures
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Segmenting Tables Horizontally
(continued)

• Cons
– May require UNION to recombine when full set of data 

is needed
• Use UNION ALL so duplicate elimination isn’t required

– May be more difficult to manage referential integrity
– Visible to users and applications

• Technique
– Store each row in exactly one of the new tables
– Include all of the columns in each segment
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Partitioned Views

• First introduced in SQL Server 7, 
partitioned views allow you to segment a 
table horizontally and have the optimizer 
determine the correct partition to query

• Partitioned views can be read-only or
updatable
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Partitioned View Example

Pre1970Orders

Orders1970to1990

Post1990Orders

Orders

Tables

View
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Partitioned Views
(continued)

• Queries of the form
WHERE OrderDate < 1970

will search only the Pre1970Orders table
• The partitioned tables can be placed on 

separate file groups
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Defining the Partitioned Base 
Tables

• Choose a partitioning column
– Cannot allow nulls
– Cannot be a computed column

• Must be able to apply a check constraint to the 
partitioning column
– No overlaps in values between tables
– Only operators allowed are BETWEEN, AND, OR, =, >, 
>=, <, and <=

• Base tables cannot have any indexes on 
computed columns
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Defining the Partitioned View

• Series of SELECT statements against each 
of the base tables

• Combine the SELECTs with UNION ALL
• Partitioning column must be in the same 

position in all SELECT lists
• Each base table can appear only once in 

the view
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Maintaining Data Through 
Partitioned Views

• When inserting new rows, must supply a value 
for all nonnullable columns in the view
– Defaults will be ignored

• Partitioning column must conform to the one of 
the check constraints in the underlying table

• Must have a primary key 
• Primary key must include the partitioning column
• Cannot have an identity column
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Other Partitioning Strategies

• Separate OLTP activities from Decision 
Support activities

• Defer resource-intensive processing until
nonpeak hours if possible
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• Demo 1
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Federated Databases
• SQL Server 2000 (Enterprise and 

Developer editions only) introduces the 
ability to build a federated database
– Also referred to as Distributed Partitioned 

Views (DPV)
– Technology that Microsoft has used for its 

high TPC-C benchmark scores
• In a federated database, some or all of the 

database tables are distributed across 
multiple servers
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Federated Databases
(continued)

• After a database and its applications have been 
fully optimized, there are two additional ways of 
increasing performance
– Scale up is available in 7 and 2K
– Scale out is only SQL2K

• Scale up by adding
– More memory
– More CPUs
– Faster CPUs
– More or faster disks
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Federated Databases
(continued)

• Scale out by adding more server nodes

Pre1970Orders

Orders1970to19
90

Post1990Orders

Orders

Tables

View
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Should I Scale Up or Scale 
Out?

• Scale up first
• When you have scaled up completely to 

the maximum feasible capacity of one 
server, and are still not meeting your 
performance goals, think about scaling out

• Make sure that your queries are properly 
tuned before scaling out
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Should I Scale Up or Scale Out?
(continued)

• Scale out does not improve response times for a 
single query
– In fact, often slower because of the need to retrieve 

remote data
– Instead, can ultimately perform more transactions per 

unit of time because there is more total hardware 
capacity

• Example:
– 8-processor box can perform 100 transactions per 

second
– With distributed partitioned views, transaction rate 

drops to 50 per second
– But with four 8-way servers, end result is 200 

transactions per second

SQL Server Magazine LIVE!

Designing a Federated 
Database

• Best if you can store a partitioned table and its 
related tables together
– If we partition Orders, we would also want to partition 

Order Details
– Same principle also applies to local partitioned views

• Lookup tables can be copied if static or 
managed with replication or INSTEAD OF
triggers

• Will need a lot of monitoring over time to make 
sure the initial partition design remains 
appropriate
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Using a Routing Table
• Federated databases may have a combination 

of distributed partitioned views and data-
dependent routing 
– Data-dependent routing is used by an application to 

determine where desired data can be found
• Allows applications to query locations directly
• Maintain the location table in SQL Server
• At application startup, cache the location table in 

the front end
• Use this to determine where data is located, or 

where data should be modified
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Implementing a Federated 
Database

• All servers must be SQL Server 2000
• Table structures must be identical, except for the 
CHECK constraint that defines the partition

• Partition tables must not have triggers or 
cascading referential integrity constraints
– Must conform to the rules for local partitioned views

• Create the partition tables on the member 
servers
– Table names and database names should be the 

same on all member servers
• Add linked server definitions
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Implementing a Federated 
Database (continued)

• Set the lazy schema validation
option

sp_serveroption 'servername', 
'lazy schema validation',
TRUE

– This option makes sure that the query 
processor doesn’t request metadata for any of 
the linked tables until it is actually needed
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Implementing a Federated 
Database (continued)

• Create the distributed partitioned view on each 
server
CREATE VIEW Orders

AS

SELECT * 
FROM server1.BigWind.dbo.Pre1970Orders

UNION ALL
SELECT *

FROM server2.Bigwind.dbo.Orders19701990

UNION ALL
SELECT *

FROM server3.Bigwind.Dbo.Post1990Orders
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• Demo 2
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Questions?
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Thank you!

• Please drop off your 
session evaluations in 
the basket at the back 
of the room!

• Your comments are 
greatly appreciated!


