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Quick info about Fernando
(2 milliseconds)

QA
• MCSD, MCSE+Internet (W2K), MCDBA, MCT, 

SQL Server MVP

• This is where I work: QA, The best learning 
environment in Europe

• Writing for SQL Sever Magazine and SQL 
Server Professional

• This is my main web site: www.callsql.com

• This is my book (so far):
– Microsoft SQL Server 2000 Programming by 

Example (ISBN : 0789724499, co-authored with Carlos 
Eduardo Rojas)

• Currently writing on ADO.NET and SQL Server 
2000
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Agenda

• Concurrency problems
• Isolation levels
• Locks
• Transactions
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Concurrency problems

• Lost Updates
• Uncommitted Dependency
• Inconsistent Analysis
• Phantom Reads
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Lost Updates (1)
Peter Paul

Mary
(SQL Server)

PaulPeter

10.010.0
UnitPriceUnitPrice
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Lost Updates (2)
Peter Paul

Mary
(SQL Server)

DECLARE @UP money

SELECT @UP = UnitPrice
FROM Products
WHERE ProductID = 25

PaulPeter

10.012.010.0
UnitPrice@UP * 1.2UnitPrice
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Lost Updates (3)
Peter Paul

Mary
(SQL Server)

DECLARE @UP money

SELECT @UP = UnitPrice
FROM Products
WHERE ProductID = 25

DECLARE @UP money

SELECT @UP = UnitPrice
FROM Products
WHERE ProductID = 25

PaulPeter

11.010.012.010.0
@UP * 1.1UnitPrice@UP * 1.2UnitPrice

7

SQL Server Magazine LIVE!

Lost Updates (4)
Peter Paul

Mary
(SQL Server)

DECLARE @UP money

SELECT @UP = UnitPrice
FROM Products
WHERE ProductID = 25

UPDATE Products
SET UnitPrice = 

@UP * 1.2
WHERE ProductID = 25

DECLARE @UP money

SELECT @UP = UnitPrice
FROM Products
WHERE ProductID = 25

PaulPeter

11.012.012.012.0
@UP * 1.1UnitPrice@UP * 1.2UnitPrice
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Lost Updates (5)
Peter Paul

Mary
(SQL Server)

DECLARE @UP money

SELECT @UP = UnitPrice
FROM Products
WHERE ProductID = 25

UPDATE Products
SET UnitPrice = @UP * 1.2
WHERE ProductID = 25

DECLARE @UP money

SELECT @UP = UnitPrice
FROM Products
WHERE ProductID = 25

UPDATE Products
SET UnitPrice = 

@UP * 1.1
WHERE ProductID = 25

PaulPeter

11.011.012.011.0
@UP * 1.1UnitPrice@UP * 1.2UnitPrice
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Uncommitted Dependency (1)
Peter Paul

Mary
(SQL Server)

PaulPeter

10.010.0
UnitPriceUnitPrice
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Uncommitted Dependency (2)
Peter Paul

Mary
(SQL Server)

BEGIN TRANSACTION

UPDATE PRODUCTS
SET UnitPrice = 

UnitPrice * 1.2
WHERE ProductID = 25

PaulPeter

12.012.0
UnitPriceUnitPrice

11

SQL Server Magazine LIVE!

Uncommitted Dependency (3)
Peter Paul

Mary
(SQL Server)

BEGIN TRANSACTION

UPDATE PRODUCTS
SET UnitPrice = UnitPrice * 1.2
WHERE ProductID = 25

DECLARE @UP money

SELECT @UP = UnitPrice
FROM Products (NOLOCK)
WHERE ProductID = 25

PaulPeter

12.012.012.0
@UPUnitPriceUnitPrice
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Uncommitted Dependency (4)
Peter Paul

Mary
(SQL Server)

BEGIN TRANSACTION

UPDATE PRODUCTS
SET UnitPrice = UnitPrice * 1.2
WHERE ProductID = 25

ROLLBACK TRANSACTION

DECLARE @UP money

SELECT @UP = UnitPrice
FROM Products
WHERE ProductID = 25

PaulPeter

12.010.010.0
@UPUnitPriceUnitPrice

PaulPeter

12.012.012.0
@UPUnitPriceUnitPrice
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Uncommitted Dependency (5)
Peter Paul

Mary
(SQL Server)

BEGIN TRANSACTION

UPDATE PRODUCTS
SET UnitPrice = UnitPrice * 1.2
WHERE ProductID = 25

ROLLBACK TRANSACTION

DECLARE @UP money

SELECT @UP = UnitPrice
FROM Products
WHERE ProductID = 25

INSERT [Order details] (
OrderID, 
ProductID, 
UnitPrice,
Quantity, 
Discount)

VALUES (25365, 25, 
@UP, 10, 0.1)

PaulPeter

12.010.010.0
@UPUnitPriceUnitPrice
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Inconsistent Analysis (1)
Peter Paul

Mary
(SQL Server)

Peter
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Inconsistent Analysis (2)
Peter Paul

Mary
(SQL Server)

DECLARE @Count int, 
@Total money, 
@Average money

SELECT @Count = 
COUNT(DISTINCT 

OrderID)
FROM [Order Details]

@Average
@Total

Peter

@Total / @Count

830@Count
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Inconsistent Analysis (3)
Peter Paul

Mary
(SQL Server)

DECLARE @Count int, 
@Total money, 
@Average money

SELECT @Count = 
COUNT(DISTINCT OrderID)

FROM [Order Details]

UPDATE [Order details]
SET Quantity = 600
WHERE OrderID = 10272
AND ProductID = 20

@Average
@Total

Peter

@Total / @Count

830@Count
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Inconsistent Analysis (4)
Peter Paul

Mary
(SQL Server)

DECLARE @Count int, 
@Total money, 
@Average money

SELECT @Count = 
COUNT(DISTINCT OrderID)

FROM [Order Details]

SELECT @Total = 
SUM(UnitPrice * 

Quantity *
(1 – Discount))

FROM [Order Details]

UPDATE [Order details]
SET Quantity = 600
WHERE OrderID = 10272
AND ProductID = 20

@Average
1304284.24@Total

Peter

1571.43@Total / @Count

830@Count
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Inconsistent Analysis (5)
Peter Paul

Mary
(SQL Server)

DECLARE @Count int, 
@Total money, 
@Average money

SELECT @Count = 
COUNT(DISTINCT OrderID)

FROM [Order Details]

SELECT @Total = 
SUM(UnitPrice * 

Quantity *
(1 – Discount))

FROM [Order Details]

UPDATE [Order details]
SET Quantity = 600
WHERE OrderID = 10272
AND ProductID = 20

UPDATE [Order details]
SET Discount = 0.4
WHERE ProductID = 20

@Average
1304284.24@Total

Peter

1571.43@Total / @Count

830@Count

19

SQL Server Magazine LIVE!

Inconsistent Analysis (6)
Peter Paul

Mary
(SQL Server)

DECLARE @Count int, 
@Total money, 
@Average money

SELECT @Count = 
COUNT(DISTINCT OrderID)

FROM [Order Details]

SELECT @Total = 
SUM(UnitPrice * 

Quantity *
(1 – Discount))

FROM [Order Details]

UPDATE [Order details]
SET Quantity = 600
WHERE OrderID = 10272
AND ProductID = 20

UPDATE [Order details]
SET Discount = 0.4
WHERE ProductID = 20

1542.78@Average
1304284.24@Total

Peter

1571.43@Total / @Count

830@Count

SELECT @Average = 
AVG(TotalPrice)

FROM (…) AS TotOrders
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Phantom Reads (1)
Peter Paul

Mary
(SQL Server)

20.83710408

26.03710523

26.03710847

37

37

37

ProductID

10966

10337

10259

OrderID

20.8

20.8

26.0

UnitPrice

SELECT OrderID,
ProductID, 
UnitPrice

FROM [Order Details]
WHERE ProductID = 37
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Phantom Reads (2)
Peter Paul

Mary
(SQL Server)

26.003710966

31.543710615

20.803710408

26.003710523

26.003710847

37

37

ProductID

10337

10259

OrderID

20.80

20.80

UnitPrice

INSERT [Order details] 
(OrderID, ProductID,
UnitPrice, Quantity,
Discount)

VALUES (10615, 37, 
31.54, 20, 0.1)

SELECT OrderID,
ProductID, 
UnitPrice

FROM [Order Details]
WHERE ProductID = 37
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Phantom Reads (3)
Peter Paul

Mary
(SQL Server)

26.003710966

31.543710615

20.803710408

26.003710523

26.003710847

37

37

ProductID

10337

10259

OrderID

20.80

20.80

UnitPrice

SELECT OrderID,
ProductID, 
UnitPrice

FROM [Order Details]
WHERE ProductID = 37

INSERT [Order details] 
(OrderID, ProductID,
UnitPrice, Quantity,
Discount)

VALUES (10615, 37, 
31.54, 20, 0.1)

SELECT OrderID,
ProductID, 
UnitPrice

FROM [Order Details]
WHERE ProductID = 37
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Isolation levels

• Transact-SQL:
– READ COMMITTED
– READ UNCOMMITTED
– REPEATABLE READ
– SERIALIZABLE

• Extra .NET Isolation Levels:
– Chaos (not valid for SQLClient)
– Unspecified (not settable for SQLClient)

24
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Isolation levels vs. Concurrency 
problems

SPPPPhantom 
Reads

SSPPInconsistent 
Analysis

SSSPDirty Read

XXXXLost Update

Isolation 
Level

P Problem

S Solution

X solved by standard
exclusive locks inside
transactions
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READ COMMITTED
• Default isolation level
• Avoids Dirty Reads

– myTran = myconn.BeginTransaction( IsolationLevel.ReadCommitted)
– SELECT … FROM … WITH (READCOMMITTED)
– SELECT … FROM … WITH (READPAST)
– SET TRANSACTION ISOLATION LEVEL READ COMMITTED

• Requests Shared locks for the duration of the reading 
operation

• Requests Exclusive locks for each modification

26
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READ UNCOMMITTED

• Isolation level only suitable for “sneaking 
around”
– myTran = myconn.BeginTransaction( 

IsolationLevel.ReadUnCommitted)
– SELECT … FROM … WITH (READUNCOMMITTED)
– SELECT … FROM … WITH (NOLOCK)
– SET TRANSACTION ISOLATION LEVEL READ 

UNCOMMITTED

• Doesn’t request Shared locks at all
• Requests Exclusive locks for each modification
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REPEATABLE READ
• Quite a restrictive isolation level
• Avoids all concurrency problems, except Phantom 

Reads 
– myTran = myconn.BeginTransaction( IsolationLevel.RepeatableRead)
– SELECT … FROM … WITH (REPEATABLEREAD)
– SET TRANSACTION ISOLATION LEVEL REPEATABLE READ

• Requests Shared locks for the duration of the 
transaction

• Requests Exclusive locks for each modification
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SERIALIZABLE
• The most restrictive isolation level
• Avoids all concurrency problems

– myTran = myconn.BeginTransaction( IsolationLevel.Serializable)
– SELECT … FROM … WITH (SERIALIZABLE)
– SELECT … FROM … WITH (HOLDLOCK)
– SET TRANSACTION ISOLATION LEVEL SERIALIZABLE

• Requests Shared locks for the duration of the 
transaction

• Requests Exclusive locks for each modification
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Transactions

• Transact-SQL transactions
• Distributed transactions
• .NET Manual transactions
• .NET Automatic transactions
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Transact-SQL transactions

• Transaction Statements
• Nested transactions
• Transactions and Stored Procedures
• Transactions and Triggers

31
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Managing transactions with 
Transact-SQL Statements

• BEGIN TRAN
• COMMIT TRAN
• ROLLBACK TRAN

32
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Transaction Savepoints

• SAVE TRAN TranName
• ROLLBACK TRAN TranName
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Nested transactions

• @@TRANCOUNT tells you how many 
transaction levels you are in

• For SQL Server there is only one actual 
transaction

• Commit happens only when all nested 
transactions are ended

• Rollback cancels all nested transactions at 
once

34
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Transactions and Stored 
Procedures

• After Rollback execution continues, but you are 
outside transaction boundaries

• If Rollback happens inside a procedure, the 
calling process receives error 266, Level 16:
– Transaction count after EXECUTE indicates that a 

COMMIT or ROLLBACK TRANSACTION statement is 
missing. Previous count = 1, current count = 0.

• Good idea to use save points and inform the 
outer process using output parameters
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Transactions and Triggers

• After Rollback execution continues inside 
the trigger, but you are outside transaction 
boundaries and the process terminates 
when the trigger does.

• Consider using INSTEAD OF triggers to 
minimize rollbacks

• Consider using cancelling operations 
instead of rollbacks
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Distributed transactions

37
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.NET Manual transactions

38
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.NET Automatic transactions

• Apply the TransactionAttribute to your class. 
• Derive your class from the 

ServicedComponent Class. 
• Sign the assembly with a strong name. 

– To sign the assembly using attributes create a 
key pair using the Sn.exe utility. 

– sn -k MCTCon.snk
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.NET Automatic transactions (2)
<Assembly: ApplicationName("MCTCON")> 
<Assembly: AssemblyKeyFileAttribute("MCTCON.snk")> 

<Transaction(TransactionOption.Required)> Public Class clsProduct
Inherits ServicedComponent

Dim myConnection As SqlConnection

<AutoComplete()> Public Sub RaisePrice(ByVal ProductID As Integer, 
ByVal amount As Integer)

OpenConnection()
Updateproduct(ProductID, amount)
CloseConnection()

End Sub
40
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.NET Automatic transactions (3)

41
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Locks

• Dynamic locking strategy
• Locking SQL Server resources
• Types of locks
• Hunting for locks
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Dynamic locking strategy

• SQL Server tries to minimize locking costs 
balancing:
– Lock granularity
– Lock maintenance cost

• SQL Server 2000 defaults to row lock 
when necessary

• Uses latches, lightweight synchronization 
objects, for internal operations, minimizing 
expensive locks
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Locking SQL Server resources

• SQL Server 2000 can lock:
– Data Row
– Index Key
– Any page
– Extent
– Table
– Database
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Types of locks
• Shared (S) 
• Update (U) 
• Exclusive (X)
• Intent:

– intent shared (IS)
– intent exclusive (IX)
– shared with intent exclusive (SIX)

• Schema:
– schema modification (Sch-M)
– schema stability (Sch-S).

• Bulk Update (BU) 
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A typical case of Deadlock 
involving two connections (demo)

46
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A Deadlock situation involving 
more than two connections 

(demo)
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Binding connections (demo)
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Hunting for locks

• Profiler can detect locks
• Performance Monitor counts locks
• Transaction Log registers transactions. It 

doesn’t register locks
• Convert sp_lock into fn_lock

SELECT *
FROM ::fn_lock()
WHERE Status = 'WAIT'
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Using Profiler to detect locks 
(demo)
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Using Performance Monitor to 
count locks (demo)
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Detecting transactions in the 
Transaction Log (demo)
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Locking techniques from ADO.NET

• Optimistic concurrency
• Pessimistic concurrency
• User-defined concurrency
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Optimistic concurrency

• Default behavior from DataAdapter
• Based on sp_executesql
• SET clause with all new values:

– Updated columns
– Unchanged columns

• WHERE clause with all old values:
– Updated columns
– Unchanged columns
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Pessimistic Concurrency

• Implemented through SqlCommand
objects and stored procedures

• Not scaleable:
– Requires maintaining connection open
– Open transaction
– Too much locking for too much time

• Necessary in some scenarios
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User-defined concurrency

• Trace changes on individual columns
• Avoid unnecessary trigger execution
• Avoid unnecessary locks
• Fewer conflicts
• Requires careful design
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User-defined concurrency from 
ADO.NET (demo)
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Application locks

• Give applications access to the SQL 
Server Lock Manager

• sp_getapplock 'resource_name', 
'lock_mode', 'lock_owner', 'lockTimeout‘

• sp_releaseapplock 'resource_name‘,   
'lock_owner' ]
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Application locks (demo)

59
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Do you want to know more?
• “Inside SQL Server 2000” (Kalen Delaney, MSPress)
• “Advanced Transact-SQL for SQL Server 2000” (Itzik 

Ben-Gan & Tom Moreau, APress)
• “SQL Server 2000 Programming” (Robert Vieira, WROX)
• “Microsoft SQL Server 2000 Programming by Example” 

(Fernando G. Guerrero & Carlos Eduardo Rojas, QUE)
• SQL Server 2000 Resource Kit (MSPress & TechNet)
• Visit the Microsoft public newsgroups:

– msnews.microsoft.com/microsoft.public.sqlserver.*
• Download the source code of this session from:

– http://www.callsql.com/en/articles
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Do you want to know even 
more?

• Visit the Microsoft public newsgroups:
– msnews.microsoft.com/microsoft.public.sql

server.*
– msnews.microsoft.com/microsoft.public.dot

net.*
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Thank you! 
Questions?

• Download the source code of this 
session from:
– http://www.callsql.com/en/articles

• You can contact me at:
– fernan@guerrerog.org
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Thank you!

• Please drop off your 
session evaluations in 
the basket at the back 
of the room!

• Your comments are 
greatly appreciated!



 




