
copyright by Tech Conferences and the Author. All rights reserved worldwide. Reprinted by permission.

SAD335

Concurrency problems and
locking techniques in SQL
Server 2000 and VB.NET

Fernando G. Guerrero
SQL Server MVP

.NET Technical Lead
QA plc

October 2002

SQL Server Magazine LIVE!

Quick info about Fernando
(2 milliseconds)

QA
• MCSD, MCSE+Internet (W2K), MCDBA, MCT,

SQL Server MVP

• This is where I work: QA, The best learning
environment in Europe

• Writing for SQL Sever Magazine and SQL
Server Professional

• This is my main web site: www.callsql.com

• This is my book (so far):
– Microsoft SQL Server 2000 Programming by

Example (ISBN : 0789724499, co-authored with Carlos
Eduardo Rojas)

• Currently writing on ADO.NET and SQL Server
2000

SQL Server Magazine LIVE!

Agenda

• Concurrency problems
• Isolation levels
• Locks
• Transactions

3

copyright by Tech Conferences and the Author. All rights reserved worldwide. Reprinted by permission.

SQL Server Magazine LIVE!

Concurrency problems

• Lost Updates
• Uncommitted Dependency
• Inconsistent Analysis
• Phantom Reads

4

SQL Server Magazine LIVE!

Lost Updates (1)
Peter Paul

Mary
(SQL Server)

PaulPeter

10.010.0
UnitPriceUnitPrice

5

SQL Server Magazine LIVE!

Lost Updates (2)
Peter Paul

Mary
(SQL Server)

DECLARE @UP money

SELECT @UP = UnitPrice
FROM Products
WHERE ProductID = 25

PaulPeter

10.012.010.0
UnitPrice@UP * 1.2UnitPrice

6

copyright by Tech Conferences and the Author. All rights reserved worldwide. Reprinted by permission.

SQL Server Magazine LIVE!

Lost Updates (3)
Peter Paul

Mary
(SQL Server)

DECLARE @UP money

SELECT @UP = UnitPrice
FROM Products
WHERE ProductID = 25

DECLARE @UP money

SELECT @UP = UnitPrice
FROM Products
WHERE ProductID = 25

PaulPeter

11.010.012.010.0
@UP * 1.1UnitPrice@UP * 1.2UnitPrice

7

SQL Server Magazine LIVE!

Lost Updates (4)
Peter Paul

Mary
(SQL Server)

DECLARE @UP money

SELECT @UP = UnitPrice
FROM Products
WHERE ProductID = 25

UPDATE Products
SET UnitPrice =

@UP * 1.2
WHERE ProductID = 25

DECLARE @UP money

SELECT @UP = UnitPrice
FROM Products
WHERE ProductID = 25

PaulPeter

11.012.012.012.0
@UP * 1.1UnitPrice@UP * 1.2UnitPrice

8

SQL Server Magazine LIVE!

Lost Updates (5)
Peter Paul

Mary
(SQL Server)

DECLARE @UP money

SELECT @UP = UnitPrice
FROM Products
WHERE ProductID = 25

UPDATE Products
SET UnitPrice = @UP * 1.2
WHERE ProductID = 25

DECLARE @UP money

SELECT @UP = UnitPrice
FROM Products
WHERE ProductID = 25

UPDATE Products
SET UnitPrice =

@UP * 1.1
WHERE ProductID = 25

PaulPeter

11.011.012.011.0
@UP * 1.1UnitPrice@UP * 1.2UnitPrice

9

copyright by Tech Conferences and the Author. All rights reserved worldwide. Reprinted by permission.

SQL Server Magazine LIVE!

Uncommitted Dependency (1)
Peter Paul

Mary
(SQL Server)

PaulPeter

10.010.0
UnitPriceUnitPrice

10

SQL Server Magazine LIVE!

Uncommitted Dependency (2)
Peter Paul

Mary
(SQL Server)

BEGIN TRANSACTION

UPDATE PRODUCTS
SET UnitPrice =

UnitPrice * 1.2
WHERE ProductID = 25

PaulPeter

12.012.0
UnitPriceUnitPrice

11

SQL Server Magazine LIVE!

Uncommitted Dependency (3)
Peter Paul

Mary
(SQL Server)

BEGIN TRANSACTION

UPDATE PRODUCTS
SET UnitPrice = UnitPrice * 1.2
WHERE ProductID = 25

DECLARE @UP money

SELECT @UP = UnitPrice
FROM Products (NOLOCK)
WHERE ProductID = 25

PaulPeter

12.012.012.0
@UPUnitPriceUnitPrice

12

copyright by Tech Conferences and the Author. All rights reserved worldwide. Reprinted by permission.

SQL Server Magazine LIVE!

Uncommitted Dependency (4)
Peter Paul

Mary
(SQL Server)

BEGIN TRANSACTION

UPDATE PRODUCTS
SET UnitPrice = UnitPrice * 1.2
WHERE ProductID = 25

ROLLBACK TRANSACTION

DECLARE @UP money

SELECT @UP = UnitPrice
FROM Products
WHERE ProductID = 25

PaulPeter

12.010.010.0
@UPUnitPriceUnitPrice

PaulPeter

12.012.012.0
@UPUnitPriceUnitPrice

13

SQL Server Magazine LIVE!

Uncommitted Dependency (5)
Peter Paul

Mary
(SQL Server)

BEGIN TRANSACTION

UPDATE PRODUCTS
SET UnitPrice = UnitPrice * 1.2
WHERE ProductID = 25

ROLLBACK TRANSACTION

DECLARE @UP money

SELECT @UP = UnitPrice
FROM Products
WHERE ProductID = 25

INSERT [Order details] (
OrderID,
ProductID,
UnitPrice,
Quantity,
Discount)

VALUES (25365, 25,
@UP, 10, 0.1)

PaulPeter

12.010.010.0
@UPUnitPriceUnitPrice

14

SQL Server Magazine LIVE!

Inconsistent Analysis (1)
Peter Paul

Mary
(SQL Server)

Peter

15

copyright by Tech Conferences and the Author. All rights reserved worldwide. Reprinted by permission.

SQL Server Magazine LIVE!

Inconsistent Analysis (2)
Peter Paul

Mary
(SQL Server)

DECLARE @Count int,
@Total money,
@Average money

SELECT @Count =
COUNT(DISTINCT

OrderID)
FROM [Order Details]

@Average
@Total

Peter

@Total / @Count

830@Count

16

SQL Server Magazine LIVE!

Inconsistent Analysis (3)
Peter Paul

Mary
(SQL Server)

DECLARE @Count int,
@Total money,
@Average money

SELECT @Count =
COUNT(DISTINCT OrderID)

FROM [Order Details]

UPDATE [Order details]
SET Quantity = 600
WHERE OrderID = 10272
AND ProductID = 20

@Average
@Total

Peter

@Total / @Count

830@Count

17

SQL Server Magazine LIVE!

Inconsistent Analysis (4)
Peter Paul

Mary
(SQL Server)

DECLARE @Count int,
@Total money,
@Average money

SELECT @Count =
COUNT(DISTINCT OrderID)

FROM [Order Details]

SELECT @Total =
SUM(UnitPrice *

Quantity *
(1 – Discount))

FROM [Order Details]

UPDATE [Order details]
SET Quantity = 600
WHERE OrderID = 10272
AND ProductID = 20

@Average
1304284.24@Total

Peter

1571.43@Total / @Count

830@Count

18

copyright by Tech Conferences and the Author. All rights reserved worldwide. Reprinted by permission.

SQL Server Magazine LIVE!

Inconsistent Analysis (5)
Peter Paul

Mary
(SQL Server)

DECLARE @Count int,
@Total money,
@Average money

SELECT @Count =
COUNT(DISTINCT OrderID)

FROM [Order Details]

SELECT @Total =
SUM(UnitPrice *

Quantity *
(1 – Discount))

FROM [Order Details]

UPDATE [Order details]
SET Quantity = 600
WHERE OrderID = 10272
AND ProductID = 20

UPDATE [Order details]
SET Discount = 0.4
WHERE ProductID = 20

@Average
1304284.24@Total

Peter

1571.43@Total / @Count

830@Count

19

SQL Server Magazine LIVE!

Inconsistent Analysis (6)
Peter Paul

Mary
(SQL Server)

DECLARE @Count int,
@Total money,
@Average money

SELECT @Count =
COUNT(DISTINCT OrderID)

FROM [Order Details]

SELECT @Total =
SUM(UnitPrice *

Quantity *
(1 – Discount))

FROM [Order Details]

UPDATE [Order details]
SET Quantity = 600
WHERE OrderID = 10272
AND ProductID = 20

UPDATE [Order details]
SET Discount = 0.4
WHERE ProductID = 20

1542.78@Average
1304284.24@Total

Peter

1571.43@Total / @Count

830@Count

SELECT @Average =
AVG(TotalPrice)

FROM (…) AS TotOrders

20

SQL Server Magazine LIVE!

Phantom Reads (1)
Peter Paul

Mary
(SQL Server)

20.83710408

26.03710523

26.03710847

37

37

37

ProductID

10966

10337

10259

OrderID

20.8

20.8

26.0

UnitPrice

SELECT OrderID,
ProductID,
UnitPrice

FROM [Order Details]
WHERE ProductID = 37

21

copyright by Tech Conferences and the Author. All rights reserved worldwide. Reprinted by permission.

SQL Server Magazine LIVE!

Phantom Reads (2)
Peter Paul

Mary
(SQL Server)

26.003710966

31.543710615

20.803710408

26.003710523

26.003710847

37

37

ProductID

10337

10259

OrderID

20.80

20.80

UnitPrice

INSERT [Order details]
(OrderID, ProductID,
UnitPrice, Quantity,
Discount)

VALUES (10615, 37,
31.54, 20, 0.1)

SELECT OrderID,
ProductID,
UnitPrice

FROM [Order Details]
WHERE ProductID = 37

22

SQL Server Magazine LIVE!

Phantom Reads (3)
Peter Paul

Mary
(SQL Server)

26.003710966

31.543710615

20.803710408

26.003710523

26.003710847

37

37

ProductID

10337

10259

OrderID

20.80

20.80

UnitPrice

SELECT OrderID,
ProductID,
UnitPrice

FROM [Order Details]
WHERE ProductID = 37

INSERT [Order details]
(OrderID, ProductID,
UnitPrice, Quantity,
Discount)

VALUES (10615, 37,
31.54, 20, 0.1)

SELECT OrderID,
ProductID,
UnitPrice

FROM [Order Details]
WHERE ProductID = 37

23

SQL Server Magazine LIVE!

Isolation levels

• Transact-SQL:
– READ COMMITTED
– READ UNCOMMITTED
– REPEATABLE READ
– SERIALIZABLE

• Extra .NET Isolation Levels:
– Chaos (not valid for SQLClient)
– Unspecified (not settable for SQLClient)

24

copyright by Tech Conferences and the Author. All rights reserved worldwide. Reprinted by permission.

SQL Server Magazine LIVE!

Isolation levels vs. Concurrency
problems

SPPPPhantom
Reads

SSPPInconsistent
Analysis

SSSPDirty Read

XXXXLost Update

Isolation
Level

P Problem

S Solution

X solved by standard
exclusive locks inside
transactions

C
on

cu
rr

en
cy

P
ro

bl
em

R
E

A
D

U
N

C
O

M
M

ITTE
D

R
E

A
D

C
O

M
M

ITTE
D

R
E

P
E

A
TA

BLE
R

E
A

D

S
E

R
IA

LIZA
B

LE

25

SQL Server Magazine LIVE!

READ COMMITTED
• Default isolation level
• Avoids Dirty Reads

– myTran = myconn.BeginTransaction(IsolationLevel.ReadCommitted)
– SELECT … FROM … WITH (READCOMMITTED)
– SELECT … FROM … WITH (READPAST)
– SET TRANSACTION ISOLATION LEVEL READ COMMITTED

• Requests Shared locks for the duration of the reading
operation

• Requests Exclusive locks for each modification

26

SQL Server Magazine LIVE!

READ UNCOMMITTED

• Isolation level only suitable for “sneaking
around”
– myTran = myconn.BeginTransaction(

IsolationLevel.ReadUnCommitted)
– SELECT … FROM … WITH (READUNCOMMITTED)
– SELECT … FROM … WITH (NOLOCK)
– SET TRANSACTION ISOLATION LEVEL READ

UNCOMMITTED

• Doesn’t request Shared locks at all
• Requests Exclusive locks for each modification

27

copyright by Tech Conferences and the Author. All rights reserved worldwide. Reprinted by permission.

SQL Server Magazine LIVE!

REPEATABLE READ
• Quite a restrictive isolation level
• Avoids all concurrency problems, except Phantom

Reads
– myTran = myconn.BeginTransaction(IsolationLevel.RepeatableRead)
– SELECT … FROM … WITH (REPEATABLEREAD)
– SET TRANSACTION ISOLATION LEVEL REPEATABLE READ

• Requests Shared locks for the duration of the
transaction

• Requests Exclusive locks for each modification

28

SQL Server Magazine LIVE!

SERIALIZABLE
• The most restrictive isolation level
• Avoids all concurrency problems

– myTran = myconn.BeginTransaction(IsolationLevel.Serializable)
– SELECT … FROM … WITH (SERIALIZABLE)
– SELECT … FROM … WITH (HOLDLOCK)
– SET TRANSACTION ISOLATION LEVEL SERIALIZABLE

• Requests Shared locks for the duration of the
transaction

• Requests Exclusive locks for each modification

29

SQL Server Magazine LIVE!

Transactions

• Transact-SQL transactions
• Distributed transactions
• .NET Manual transactions
• .NET Automatic transactions

30

copyright by Tech Conferences and the Author. All rights reserved worldwide. Reprinted by permission.

SQL Server Magazine LIVE!

Transact-SQL transactions

• Transaction Statements
• Nested transactions
• Transactions and Stored Procedures
• Transactions and Triggers

31

SQL Server Magazine LIVE!

Managing transactions with
Transact-SQL Statements

• BEGIN TRAN
• COMMIT TRAN
• ROLLBACK TRAN

32

SQL Server Magazine LIVE!

Transaction Savepoints

• SAVE TRAN TranName
• ROLLBACK TRAN TranName

33

copyright by Tech Conferences and the Author. All rights reserved worldwide. Reprinted by permission.

SQL Server Magazine LIVE!

Nested transactions

• @@TRANCOUNT tells you how many
transaction levels you are in

• For SQL Server there is only one actual
transaction

• Commit happens only when all nested
transactions are ended

• Rollback cancels all nested transactions at
once

34

SQL Server Magazine LIVE!

Transactions and Stored
Procedures

• After Rollback execution continues, but you are
outside transaction boundaries

• If Rollback happens inside a procedure, the
calling process receives error 266, Level 16:
– Transaction count after EXECUTE indicates that a

COMMIT or ROLLBACK TRANSACTION statement is
missing. Previous count = 1, current count = 0.

• Good idea to use save points and inform the
outer process using output parameters

35

SQL Server Magazine LIVE!

Transactions and Triggers

• After Rollback execution continues inside
the trigger, but you are outside transaction
boundaries and the process terminates
when the trigger does.

• Consider using INSTEAD OF triggers to
minimize rollbacks

• Consider using cancelling operations
instead of rollbacks

36

copyright by Tech Conferences and the Author. All rights reserved worldwide. Reprinted by permission.

SQL Server Magazine LIVE!

Distributed transactions

37

SQL Server Magazine LIVE!

.NET Manual transactions

38

SQL Server Magazine LIVE!

.NET Automatic transactions

• Apply the TransactionAttribute to your class.
• Derive your class from the

ServicedComponent Class.
• Sign the assembly with a strong name.

– To sign the assembly using attributes create a
key pair using the Sn.exe utility.

– sn -k MCTCon.snk

39

copyright by Tech Conferences and the Author. All rights reserved worldwide. Reprinted by permission.

SQL Server Magazine LIVE!

.NET Automatic transactions (2)
<Assembly: ApplicationName("MCTCON")>
<Assembly: AssemblyKeyFileAttribute("MCTCON.snk")>

<Transaction(TransactionOption.Required)> Public Class clsProduct
Inherits ServicedComponent

Dim myConnection As SqlConnection

<AutoComplete()> Public Sub RaisePrice(ByVal ProductID As Integer,
ByVal amount As Integer)

OpenConnection()
Updateproduct(ProductID, amount)
CloseConnection()

End Sub
40

SQL Server Magazine LIVE!

.NET Automatic transactions (3)

41

SQL Server Magazine LIVE!

Locks

• Dynamic locking strategy
• Locking SQL Server resources
• Types of locks
• Hunting for locks

42

copyright by Tech Conferences and the Author. All rights reserved worldwide. Reprinted by permission.

SQL Server Magazine LIVE!

Dynamic locking strategy

• SQL Server tries to minimize locking costs
balancing:
– Lock granularity
– Lock maintenance cost

• SQL Server 2000 defaults to row lock
when necessary

• Uses latches, lightweight synchronization
objects, for internal operations, minimizing
expensive locks

43

SQL Server Magazine LIVE!

Locking SQL Server resources

• SQL Server 2000 can lock:
– Data Row
– Index Key
– Any page
– Extent
– Table
– Database

44

SQL Server Magazine LIVE!

Types of locks
• Shared (S)
• Update (U)
• Exclusive (X)
• Intent:

– intent shared (IS)
– intent exclusive (IX)
– shared with intent exclusive (SIX)

• Schema:
– schema modification (Sch-M)
– schema stability (Sch-S).

• Bulk Update (BU)

45

copyright by Tech Conferences and the Author. All rights reserved worldwide. Reprinted by permission.

SQL Server Magazine LIVE!

A typical case of Deadlock
involving two connections (demo)

46

SQL Server Magazine LIVE!

A Deadlock situation involving
more than two connections

(demo)

47

SQL Server Magazine LIVE!

Binding connections (demo)

48

copyright by Tech Conferences and the Author. All rights reserved worldwide. Reprinted by permission.

SQL Server Magazine LIVE!

Hunting for locks

• Profiler can detect locks
• Performance Monitor counts locks
• Transaction Log registers transactions. It

doesn’t register locks
• Convert sp_lock into fn_lock

SELECT *
FROM ::fn_lock()
WHERE Status = 'WAIT'

49

SQL Server Magazine LIVE!

Using Profiler to detect locks
(demo)

50

SQL Server Magazine LIVE!

Using Performance Monitor to
count locks (demo)

51

copyright by Tech Conferences and the Author. All rights reserved worldwide. Reprinted by permission.

SQL Server Magazine LIVE!

Detecting transactions in the
Transaction Log (demo)

52

SQL Server Magazine LIVE!

Locking techniques from ADO.NET

• Optimistic concurrency
• Pessimistic concurrency
• User-defined concurrency

53

SQL Server Magazine LIVE!

Optimistic concurrency

• Default behavior from DataAdapter
• Based on sp_executesql
• SET clause with all new values:

– Updated columns
– Unchanged columns

• WHERE clause with all old values:
– Updated columns
– Unchanged columns

54

copyright by Tech Conferences and the Author. All rights reserved worldwide. Reprinted by permission.

SQL Server Magazine LIVE!

Pessimistic Concurrency

• Implemented through SqlCommand
objects and stored procedures

• Not scaleable:
– Requires maintaining connection open
– Open transaction
– Too much locking for too much time

• Necessary in some scenarios

55

SQL Server Magazine LIVE!

User-defined concurrency

• Trace changes on individual columns
• Avoid unnecessary trigger execution
• Avoid unnecessary locks
• Fewer conflicts
• Requires careful design

56

SQL Server Magazine LIVE!

User-defined concurrency from
ADO.NET (demo)

57

copyright by Tech Conferences and the Author. All rights reserved worldwide. Reprinted by permission.

SQL Server Magazine LIVE!

Application locks

• Give applications access to the SQL
Server Lock Manager

• sp_getapplock 'resource_name',
'lock_mode', 'lock_owner', 'lockTimeout‘

• sp_releaseapplock 'resource_name‘,
'lock_owner']

58

SQL Server Magazine LIVE!

Application locks (demo)

59

SQL Server Magazine LIVE!

Do you want to know more?
• “Inside SQL Server 2000” (Kalen Delaney, MSPress)
• “Advanced Transact-SQL for SQL Server 2000” (Itzik

Ben-Gan & Tom Moreau, APress)
• “SQL Server 2000 Programming” (Robert Vieira, WROX)
• “Microsoft SQL Server 2000 Programming by Example”

(Fernando G. Guerrero & Carlos Eduardo Rojas, QUE)
• SQL Server 2000 Resource Kit (MSPress & TechNet)
• Visit the Microsoft public newsgroups:

– msnews.microsoft.com/microsoft.public.sqlserver.*
• Download the source code of this session from:

– http://www.callsql.com/en/articles

60

copyright by Tech Conferences and the Author. All rights reserved worldwide. Reprinted by permission.

SQL Server Magazine LIVE!

Do you want to know even
more?

• Visit the Microsoft public newsgroups:
– msnews.microsoft.com/microsoft.public.sql

server.*
– msnews.microsoft.com/microsoft.public.dot

net.*

61

SQL Server Magazine LIVE!

Thank you!
Questions?

• Download the source code of this
session from:
– http://www.callsql.com/en/articles

• You can contact me at:
– fernan@guerrerog.org

SQL Server Magazine LIVE!

Thank you!

• Please drop off your
session evaluations in
the basket at the back
of the room!

• Your comments are
greatly appreciated!

